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A systematic perturbation procedure, based on a small mean flow Mach number and
large duct Reynolds number, is employed to formulate and solve an initial-
boundary-value problem for acoustic processes in a shear flow contained within a
rigid-walled parallel duct. The results describe the general transient evolution of
acoustic waves driven by a plane source located at a given duct cross-section. Forced
bulk oscillations near the source and oblique wave generation are shown to result
from refraction of the basic planar axial disturbance by the shear flow. Refraction
also causes the axial waves to exhibit higher-order amplitude variations in the
transverse direction. As the source frequency approaches certain critical values,
specific refraction-induced oblique waves evolve into amplifying purely transverse
waves. As a result, the magnitude of the refraction effect increases with time, and
quasi-steady solutions do not exist. The analysis is extended to the thin acoustic
boundary layer adjacent to the solid walls to examine the shear-layer structure
induced by the variety of acoustic waves in the core flow. Nonlinear effects and
acoustic streaming are shown to be negligibly small on the scale of a few axial
wavelengths.

1. Introduction

The effect of shear flow on acoustic wave propagation was first studied analytically
by Pridmore-Brown (1958), who derived the following linearized wave equation for
propagation in a fully developed duct flow:

1 2M
Fpu = (1_M2)pzz+pyy_c_pxt+2po coMyvz’ (1)
(1] 0

where p and » are the acoustic pressure and normal velocity, respectively. The sound
speed of the mean state (p,, py, Tp) i8 ¢, and M = M(y) is the shear-flow Mach number.
Earlier efforts have been focused on seeking quasi-steady solutions of the type
p = F(y)e'**?_ Cross-stream eigenfunctions F and eigenvalues k are obtained to
describe the shear-flow distortion of specific propagating acoustic wave modes. Both
asymptotic solutions (Pridmore-Brown 1958) and numerical solutions (Mungur &
Gladwell 1969) demonstrate that for a downstream-propagating axial wave (the
fundamental mode), the acoustic pressure at the wall is significantly larger than the
value of the centreline. Calculations for upstream propagation (Hersh & Catton 1971)
show a reversed trend of acoustic pressure distribution.

Quasi-steady theory is useful for describing only limited types of acoustic
phenomena owing to the restrictive nature of the presumed solution form. For
example, one cannot use it to track the evolution of an initial disturbance toward the
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quasi-steady waveform, if it exists. Solutions describing temporal amplitude growth
(resonance) are excluded entirely. Furthermore, the quasi-steady solution does not
provide the absolute magnitude of a propagating wave and its relation to a specific
acoustic source, nor does it include new waves that may be generated by refraction
of the given wave. It is also important to note that the solution as well as the
formulation exclude the acoustic boundary layer where the wave motion is damped
by viscous effects to satisfy no-slip conditions on the duct wall. These limitations can
be overcome by developing an initial-boundary-value solution for acoustic
disturbances in a shear flow. In addition to the acoustic analysis one must consider
viscous boundary-layer effects adjacent to the duct walls.

Previous oscillatory boundary-layer analyses are mostly for incompressible flows.
For example, Stokes (1851) studied the long-time quasi-steady response of a viscous
fluid to boundary oscillation; Sexl (1930) and Uchida (1956) investigated laminar
pipe flow due to oscillatory pressure gradient. The heat transfer process in the
pulsating pipe flow was examined by Romie (1956). These studies all demonstrate the
velocity overshoot at the edge of the viscous layer, commonly known as Richardson’s
annular effect (Richardson & Tyler 1929). More recently, Barnett (1970, 1981)
studied the pulsating pipe flow process based on linearized turbulent Navier—Stokes
equations. Rott’s (1980) investigation of acoustic oscillations in an infinite gas region
parallel to a flat plate is more closely related to the present study, because he used
a low-Mach-number compressible gas model. The effect of mean temperature
variation along the direction of oscillation is included, but no mean flow is allowed.

In contrast to the traditional quasi-steady linear approach, Baum & Levine (1987)
developed numerical solutions to an initial-boundary-value problem in order to
describe uni-directional acoustic propagation in an axisymmetric cylinder with a
coexisting mean shear flow. The code is based on Reynolds-averaged Navier—Stokes
equations for compressible flow, coupled with the 4—¢ turbulence model. Acoustic
disturbances, generated by a disk-shaped acoustic source of spatially uniform
strength, are studied over a few acoustic wavelengths. In this short-time calculation
one cannot expect to find the quasi-steady wave structure solution used to solve (1).

The present study is inspired by the limitations of the classical quasi-steady
solutions mentioned above, and the lack of long-time results in Baum & Levine’s
work. The physical system under consideration involves a horizontal parallel duct
containing a fully developed low-Mach-number shear flow (cf. figure 1), a two-
dimensional duct counterpart to the cylinder considered by Baum & Levine (1987).
An initial-boundary-value problem is formulated for an acoustic disturbance
propagating into the imposed shear flow. The disturbance is initiated by a source
located at a given duct cross-section. Such an approach ensures the spontaneous
appearance of all types of acoustic waves, including non-axial waves, arising from the
refraction of the basic axial wave, and provides an explicit relationship between the
driving acoustic source and the evolving wave field.

The analysis is based on a laminar flow model for a viscous, heat-conducting fluid.
By using a rational approximation procedure, in §2, transport effects are shown in
a formal manner to be limited to extremely thin acoustic boundary layers adjacent
to the duct wall. Perturbation methods, based on the small mean flow Mach-number
parameter M, are employed to find solutions for both the transport-free core region
in §3 and the viscous layer in §4. The solution procedure is especially simplified due
to the low-Mach-number simplifications. Finally, in §5, the results are discussed in
comparison with the numerical solutions of Baum & Levine (1987), and the major
findings of the present work are summarized.
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F1oure 1. The physical system : source-generated acoustic oscillation in a
fully developed duct flow.

The results demonstrate that refraction, known to distort the pressure distribution
of the leading-order axial wave, is also the source of new and dispersive acoustic
transients. When non-resonant conditions prevail, these transients evolve into
oblique propagating waves and a forced bulk response at the acoustic source
frequency. The former correspond to the selected higher modes of quasi-steady
propagation in duct acoustics, while the bulk response is composed of an infinite
number of attenuated modes that decay rapidly away from the plane acoustic
source. The quasi-steady axial wave solution agrees with those from the classical
studies (Pridmore-Brown 1958 ; Hersh & Catton 1971). Resonance occurs in one of
the propagated modes if the duct width is some integer multiple of the driving
acoustic wavelength. In this case purely transverse waves with growing amplitude
are found to exist that cause a drastic increase in refraction effects.

In the viscous, heat-conducting acoustic boundary layers, a complex response
arises from the variety of acoustic waves in the core. The transverse velocity in the
acoustic boundary layer is much larger and more complicated than that predicted by
Rott (1980), because it must match with the core solution that contains refraction
effects. The refraction magnitude and the acoustic boundary-layer thickness obtained
from the perturbation solutions are found to be comparable with those of Baum &
Levine (1987).

2. Mathematical formulation

The complete dimensionless equations describing the compressible fluid motion in
a planar duct shown in figure 1 can be written in the form

p=pT, (2)
Pe +M[(pu)z+ (P”)y] =0, (3)

1 M
pluy +M(uu, +ovu,)] = _YT” .+ OFs (uy, +52%u,, +32%v,,), (4)

1 M 2 4 1
plv,+M(uv, +ov,)] = —Wﬂﬁ'm(g Vzz +50yy +5Uzy) (5)
My
p[ql-i-M(uTx-i-va)]=—M(‘y—1)p(uz+v) .QP Re (T +92T z)

+ R Y — D [y + 20, + 292 2 +03) — 32 (u, +0,)"), (6)
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where for convenience the thermophysical properties are assumed constant. The non-
dimensional variables are defined in terms of dimensional quantities by

(pl’pf, T/) u/ vl
D)=, U=, v=—,
@.p (Po: Po» To) U, Ur
t/ x’ y/ (7)
t=g, ng, y:E,-

Quantities pg, pg, and T are thermodynamic properties of the gas at mean state, d’
is the width of the duct and U the characteristic velocity of the mean flow. The
characteristic timescale is defined as the inverse of the circular frequency of the axial
acoustic wave, {5 = 1/w’, so that the wavelength gives the proper axial lengthscale
xg = ¢’/w’. The characteristic transverse velocity vy = Mw'd’. The dimensionless
groups in (2)-(6) defined by
Ue

’ 0

v,d v w'd

M= Re=—"—, Pr=—, Q=—, (8)
14 o4

are the maximum mean flow Mach number, the mean flow Reynolds number, the
Prandtl number, and the normalized axial acoustic frequency, respectively. One
notices that € is the ratio of the transverse acoustic time in the duct to the wave
period.

In the present study solutions to the system described above are sought in the limit
1/Re->0 and M — 0, where it is assumed that 1/Re < M. Additionally, one assumes
that the Prandtl number is an order-one quantity and £ < O(1).

As in previous studies (Pridmore-Brown 1958; Mungur & Gladwell 1969; Hersh &
Catton 1971), the basic steady flow in the duct is assumed to be fully developed. It
is driven by a pressure gradient which is inversely proportional to the Reynolds
number of the flow. One can easily derive from (2)-(5) that

u=Uly), v=0, dp/dx= OM?/Re). (9)

Obviously, on the lengthscale xy the variation of p is negligibly small.

Since the Reynolds number is very large, it is observed from (2)—(6) that, except
for the extremely thin acoustic boundary layers adjacent to the solid surfaces which
will be discussed in detail in §4, the wave motion in the core region is basically
unaffected by transport effects. In this limiting case, the state, continuity and energy
equations (cf. (2), (3) and (6)) can be combined to give the familiar results

M M
= g7 R = pr1 i
p=p +0(.(2Re)’ T=p +0(.QRe)' (10)
These isentropic relations, together with the inviscid versions of (3)-(5), suffice to
describe the acoustic wave motion in the core.
When the fully developed duct flow is disturbed by an O(e) acoustic velocity,
u=Uly)+ei, v=eb, (11)

it can be shown that the thermodynamic corrections are always O(Me), in order to
balance the acoustic components in the governing equations (3)—(5). Accordingly, p,
p and T are put into the following form:

p=1+Me)yp, p=1+Me)j, T=1+Me)T. (12)
The continuity equation (3) can be rewritten in terms of acoustic variables as
fut iy + 5, +MU(y,) b, + (Me) [(5d), + (56),] = 0. (13)
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Similarly, the x and ¥y momentum equations become

, A N
&, +M[U(y) 4, +6U (y)] + (Me) (4, +v4,) = T 0fe 3 Ay (14)

A

P
Q1+ (Me)p]

In (13)—(15) terms containing U(y) represent the shear-flow interaction with the
acoustic field. They are O(M) quantities. The nonlinear product terms are of O(eM).
There are three interesting asymptotic limits that can be applied to (13)—(15) for low-
Mach-number shear flows:

(i) The parameters satisfy the inequality ¢ < M < 1, and the asymptotic limit e >0, M
fized is used. The nonlinear terms can be ignored since their magnitudes are small
relative to M. A combination of (13), (14) and (15) generates a leading-order acoustic
equation equivalent to (1). This demonstrates that the previous quasi-steady
analyses by Pridmore-Brown (1958), Mungur & Gladwell (1969), and Hersh & Catton
(1971) are asymptotically accurate for extremely small-amplitude acoustics relative
to the characteristic shear-flow Mach number.

(ii) The parameters satisfy the inequality O(e) =M < 1, and the asymptotic limit
M - Oisused. If O(M?) terms in (13)—(15) are uniformly ignored relative to O(M) terms in
the asymptotic limit, their analogue to (1) contains no O(M?) term. This shows that
the Pridmore-Brown results are formally valid to O(M) where M <€ 1. Numerical
studies by Baum & Levine (1987) are primarily concerned with this regime.

(iiiy The parameters satisfy the inequality M <€ ¢ < O(1), and the asymptotic limit
M -0, ¢ fixed i3 used. An examination of (13)—(15) shows that the nonlinear terms and
the refraction-producing terms containing U(y) are of the same magnitude, O(}M), in
the limit. As a result, (1) which is purely linear cannot describe acoustic phenomena
when the pressure disturbance in (12) is O(M).

The following analysis is focused formally on Case (ii) described above, although
the solutions for acoustic variables are equally valid for Case (i) since both cases yield
identical truncated versions of (13)—(15) to O(M). The initial state of the disturbance
quantities is described by

3+ MU(y) b, + (Me) (9, +96,) = (15)

t=0, 4=90=p=0. (16)
Acoustic waves are excited at = 0 by imposing a periodic horizontal disturbance
velocity =0, %=Asin (), (17)

where the amplitude A is in general y-dependent, although the simpler case of
constant amplitude is emphasized here. The normal velocity component generated in
the viscous acoustic boundary layer is of much smaller magnitude relative to the core
flow magnitude, as will be shown later. Hence, so far as the acoustic core region is
concerned, the impermeable condition

y=0,1; =0 (18)
can be applied directly to describe the acoustic behaviour close to the duct walls.

3. Core solution
3.1. Acoustic transients due to axial wave refraction

First, the acoustic quantities are expanded asymptotically in terms of M in the
following manner:

Y=Y +M¥,+00%), ¥=(u,v,ppT). (19)
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In order to account for the small changes in the absolute wave propagation speed due
to the O(M) mean flow, it is necessary to use a strained coordinate

___*r
t+MO+ ...

X =

(20)

1

where U, = f Uly)dy (21)
0

is the bulk shear flow velocity area-averaged across the duct. One finds from

(13)—(15) ordered sets of equations:

Ptz =0, (22)
U+ D1z =0, (23)
1

7—’1t+@p1y =0, (24)
and PaytHUgz+ gy, = —Uly) pyz + ﬁoulf’ (25)
U+ Doz = Uy Prz—U) uyz—U'(y) vy, (26)

1
”2t+@p2y = —U(y) v,5. (27)

Additionally, the isentropic relations (10) imply that

Py =P D2 =P (28)
Equations (22)-(24) are combined to generate the linear, homogeneous wave
equation for p,,

1
Pm_(Plff'f'@Plyy) =0. (29)

The leading-order acoustic equation is seen to be unaffected by the mean shear flow,
except for the bulk convection effect incorporated into the variable z. If the
boundary velocity oscillation has a constant amplitude, 4 = 1 in (17), the solution
satisfying (16)—(18) describes a wave train propagating axially into a quiescent gas,
P, = Uy, =8in (—%), v, =0. (30)
Note that ahead of the wavefront, when Z > ¢, all the acoustic quantities are zero.
In order to study the explicit effect of the shear-flow velocity gradient on the
acoustic field, (25)—(27) are combined to give the second-order analogue of (29),

1 s 4
Dage— (szf"'ﬁpzw) = —2U; 0177 — 2U(Y) P17+ 2U' (y) 015 (31)

The forcing function, representing the interactions between the shear flow and the
leading-order acoustics, is simplified for the case considered here, i.e. when the
boundary oscillation is y-independent. Upon inserting (30) into (31), the latter can be
rewritten as

1 ~
p2tt—(p2ff+§p2yy) = —2[U(y)—{}] sin (t—7Z) (32)

for £ < ¢. The initial and boundary conditions necessary to solve (32) are derived by
an appropriate combination of the preceding results in this section with (16)—(18).

They are given by { = 0,~ Py = Py = 0 (33)
T=0, p,=[Uly)—U,]cos(t); ZT—>00, p,=finite; (34)
y=0;1, p,,=0. (35)
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The hyperbolic equation system (32)—(35) can be solved by a combination of
Laplace transform and Fourier series methods, as outlined below. If @ and s are used
to denote the transformed variables of p, and ¢, respectively, a Laplace transform of
(32)—(35) with respect to time ¢ yields

e—s.’Z

1+sz’ (36)

Q:E:2+Qz ny 8 Q 2[U ]

=0, Q.=[Uly)— °]s +1 Z—>o0, = finite; (37)

y=0;1, @,=0. (38)

The homogeneous boundary condition (38) suggests that a Fourier series solution of

the form ®

Q = a,(®,9)+ T a,(, 5) cos (nmy) (39)

n=1
is obtainable. Once the shear-flow velocity U(y) is Fourier decomposed into
®©
Uty) = G+ X T, cos (nny), (40)
n=1

where the bulk part U, is given by (21), and

U,=2 f Uly) cos (nmy) dy, (41)
0

it becomes clear immediately from (36)—(38) that a, = 0. The nth Fourier coefficient,
forn =1,2,..., is governed by
—s:E

—(8*+¢%)a, =20, — gyt (42)
where the parameter ¢, is defined as
q, = nn/Q. (43)
The solution to (42), which satisfies
8
a0 = 0" (44)
and has a finite value as o0, is obtained as
- <2 21} 7 7 o—8E
a,,=U(£—l) 2s exp [—(s +ql,,) x]_2_lzl,,e 5 (45)
2 $+1 (8%+q2)2 g, 1+s

Upon using (45) in (39), and taking the inverse Laplace transform by means of an
extended Laplace transform table (Oberhettinger & Badii 1973) and the convolution
theorem, one finally obtains

e o}

Py =—sin (t—Z) >, 2—2]" cos (kmy)

k=1 1k

+ i 8 (q%— 1)J1 cos (t—£) Jo [4,(£2 —2*}] A€ cos (nmy), (46)

n=1

where J, is the zeroth-order Bessel function of the first kind.
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The first term on the right-hand side of (46) represents a quasi-steady, axial
travelling wave (fundamental duct mode), with y-dependent amplitude given by the
summation. It is an O(M) correction to the leading-order axial wave (cf. (30)) and
thus describes the effect of shear-flow-induced refraction on the propagating axial
wave. As predicted by the classical theory, the axial wave acoustic pressure
redistributes itself non-uniformly across the duct. The y-dependent amplitude
function grows rapidly with driving acoustic frequency (cf. (46) and (43)) and varies
with shear flow velocity profile. It is, within a constant, equivalent to the result of
Hersh & Catton’s (1971) perturbation study, if the latter is rewritten in Fourier
decomposed form. However, here the amplitude is completely defined because the
solution is obtained from an initial-boundary-value problem.

A second fundamental advantage of studying linear acoustic refraction phenomena
in terms of an initial-boundary-value problem is that the transient (non-quasi-
steady) evolution of the acoustic refraction and its absolute magnitude can be found
explicitly, a result not available from the classical studies (Pridmore-Brown 1958;
Mungur & Gladwell 1969; Hersh & Catton 1971). The complete second term in (46)
represents acoustic transients initiated by the passage of the leading-order axial
wave through the shear flow, including dispersive effects. The transients evolve into
oblique waves (higher propagated modes) and forced bulk vibration consisting of
infinite numbers of attenuated modes, as will be shown in the next subsection.

The O(M) axial and transverse acoustic velocities can be obtained by integrating
(26) and (27), respectively. They are

= —sin (t—2Z) Z (E— I)U cos (kmy) + Z 7, (q——l)xh (t, %) cos (nmy), (47)

k=1 n=1 n
hy = f Dotull Jalan@ =2 g f f [S“‘ (£=§) _cos (é_g’]Jo[qn(gﬂ—f*ﬁ]dgdg, (48)
= [cos (t—Z)— I]Zk—sm(k‘n:y)
® 20,
Z ﬂ ﬂnff0%@ £) Jo[q,(£2— #*)1])d sin (nmy).  (49)

The two terms in both the u, and v, expressions again represent the quasi-steady
axial wave and other transient phenomena, corresponding to those in (46). For large
Z, one can show from (48) that A, ~ O(7'), so that u, remains bounded despite the
explicit Z proportionality.

3.2. The evolution to quasi-steady propagation

Insightful results for the long-time properties of p, can be obtained from the
asymptotic properties of the integral

,62) = [ 005 (=8 Tlan(E~ )16 (50)
z
When ¢, #+ 1, (50) converges for large values of ¢t such that
c0s (9 exp (g3~ 1]

o sin [t — (1 —qi)*f]

(1—g2)

» gy >1
(51)

, 4 <1,
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0

)

Ficure 2. The path of an oblique travelling wave, represented by (53) and (54).

when Z = O(1) (Gradshteyn & Ryzhik 1980). It follows from (46) and (51) that the
non-resonant long-time solution for the refractive acoustic pressure can be written as

Py =—sin (t—%) Y, 2—?‘cos (krcy)

k=1 1k

cos (nny)

+ 30, (31Tl

+cos (f) § ﬁn (Ez—l)exp [_(qi_ll)ff] cos (nmy), (52)

n=N+1 n (gn—1)t

where N is defined such that ¢y < 1 < gy,

The second full term in (52) contains N Fourier modes, or higher propagated modes
in classical acoustics terms. Each mode can be rewritten as a pair of oblique
travelling waves. This is illustrated by rewriting the nth mode, denoted by P,, as

= H[Sin (t—2p,) +8in(t—2,,)], (53)

where 2y = (1 —@WE—nny, 2, =(1—g ) Z+nmny (54)

represent a pair of oblique paths for the travelling waves, shown in figure 2. The wave
reflects repeatedly from both duct walls as it travels along. Upon each reflection, it
switches from one path to the other. If the transverse coordinate is rescaled by
Y = Qy, so that both Y are  and normalized using the same characteristic length-
scale xp = ¢’'/w’, one easily finds that the phase speed of the nth mode along the z,,,
z,, paths is unity, while the phase speed along the z-axis varies from 0 to oo,
depending on the angle of incidence 8, = sin~![(1 —g2)i]. The latter is identical to the
angle of reflection because of the rigid-wall assumption. Note that when ¢,, is close
to 1, one pair of large-amplitude oblique waves become nearly transverse, so that a
form of wave trapping appears. This type of result, to be discussed in full in §3.3,
implies that a resonance occurs when ¢, - 1~ and amplitude growth with time can be
expected.

The oblique travelling waves exist only when ¢, < 1. In dimensional terms, this
implies that n < 2d’/A’ (A’ is the wavelength) must be satisfied in order for the waves
to propagate. The number of non-axial travelling wave modes is thus proportional
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Fieure 3. Time variations of (az) the second-order acoustic pressure p,; (b) its axial wave
contribution p,, at x = 2%, y = 0 ( ) and § (----), as calculated from (46). The total acoustic
pressure j = p, +Mp, for the wave field generated by the plane source disturbance u(x = 0) = sin(¢)
in the laminar duct flow U = 4y(1—y). The dimensionless frequency £ = 2, and the maximum
mean flow Mach number M = 0.1.

to the duct width and inversely proportional to the acoustic wavelength. This is well
known in quasi-steady duct acoustics (see, for example, Morse & Ingard 1968).
However, the present transient analysis demonstrates explicitly that refraction of a
basically axial wave is the direct source of the oblique propagating waves. These
oblique waves will also interact with the shear flow as they propagate along, to
generate more complex refraction effects. The latter are not included in the p,
solution because they are O(M) smaller.

The last term in (52) describes a bulk response of the gas, driven at the frequency
of the acoustic source. These so-called attenuated modes (¢, > 1) decay exponentially
along the z-axis, and thus normally affect only a small region close to the surface of
the acoustic source. The penetration depth is proportional to (g2 —1)7%. Given (43),
one finds that small mode number n and high frequency £2 lead to deeper penetration.
Resonance can also be viewed as occurring in the limit ¢, — 1%, so that the first
attenuated mode in (52) penetrates asymptotically far into the field, up to the basic
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Figure 4. Time variations of (a) the second-order acoustic pressure p,; (b) its axial wave
contribution p,, at x =2x, y =0 ( ) and } (----- ), when the dimensionless frequency €2 = 8.
Other conditions are identical to those in figure 3.

axial wavefront. In practical terms, only the first few attenuated modes from the
second infinite summation are needed, because of the rapid decay of the Fourier
coefficients with the mode number =n.

The transition to the quasi-steady solution (52) can be illustrated by numerically
evaluating the second-order acoustic pressure from the general formula (46). Since
the Fourier series converges fairly rapidly, only the first 20 terms are used in each
summation. A comparison of the results with those from summations of 40 or more
terms shows agreement to within three decimal places. The integral I, is computed
by calling the QDAG integration subroutine from the IMSL software library, which
uses a globally adaptive scheme based on Gauss—Kronrod rules. Representative
examples of results for various acoustic frequencies and different types of duct mean
flows are discussed below.

Figures 3 and 4 show the acoustic refraction effect in a fully developed laminar
duct flow, described by U = 4y(1 —y). In figures 3(a) and 4 (a), the time variations of
P, evaluated from (46), are plotted for the cases of 2 = 2 and 8 respectively, on a
duct cross-section located at x = 2n, one wavelength downstream from the plane
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emulated by U= (1—|2y—1[) at 2 =2n, y = 0 ( ) and { (----). Other plotting conditions are
identical to those in figure 3(a).

acoustic source. The solid lines represent the second-order acoustic pressures at the
wall, while the dashed lines denote those at the centreplane of the duct. For
comparison the axial wave contribution to p, (the first term in (46), henceforth
denoted as p,,) corresponding to the conditions in figures 3(a) and 4 (a) are depicted
in figures 3(b) and 4 (b), respectively. The mean flow Mach number employed in the
calculations is 0.1.

Since the mean flow is symmetric with respect to the duct centreplane, the Fourier
coefficient U], = 0 for » odd (cf. (41)). Thus the first oblique wave pair for p,
corresponds to the n = 2 mode, whose cutoff frequency £2 = 21 (A’ = d’ in dimensional
terms). The driving acoustic frequency is below the cutoff frequency for the n = 2
mode in figure 3, so that only the propagating axial wave exists in the quasi-steady
state. The p, curves are thus similar to those for p,,. The small discrepancy, caused
by the acoustic transients induced in the gas medium when the wavefront first passes
the given location, is seen to die out gradually as the solution converges to the quasi-
steady solution (52). The effect of attenuated modes is negligibly small at z = 2.
Calculations conducted at other frequencies where there are no oblique waves show
that the transient phenomenon is more prominent and disappears more slowly for
lower-frequency cases then for higher-frequency cases.

The situation depicted in figure 4 is quite different. Here £2 = 8, higher than the
cutoff frequency for the » = 2 mode. The second-order acoustic pressure shown in
figure 4(a) is a superposition of both the axial wave and one oblique wave pair, in
addition to the small transient effect. As a result it is dramatically different, both in
amplitude and phase, from the pure axial wave solution presented in figure 4 (b).

Figure 5 depicts the time variation of p, in a ‘turbulent’ mean flow field emulated
by U= (1—|2y—1|)}. The other plotting conditions are identical to those used in
producing figure 3 (a), the laminar flow counterpart of figure 5. The refraction-
induced acoustic pressure is observed to be much smaller in amplitude in the latter,
because the mean flow represented by the one-seventh power law has a relatively
small velocity gradient in most part of the duct. The high-velocity-gradient regions,
concentrated near the two duct walls, are too narrow to promote acoustic refraction
on a global scale.
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maximum shear flow Mach number M = 0.1, and the acoustic frequency Q=m

The bulk convection of the acoustic wave by the mean flow can also be observed
from figures 3-5. The wavefront emitted from the plane acoustic source arrives at
x = 2n after approximately 5.9 dimensionless time units, which is less than 2w, the
time required for a wave to travel the same distance in a static medium.

The pressure curves in figures 3 and 5 suggest that a simple relation exists for
quasi-steady acoustic refraction at relatively low driving frequency. If 2 < 2=, so
that non-axial waves are absent from (52), and if one is sufficiently far away from the
plane acoustic source, where the effect of the attenuated modes is negligible, the
entire quasi-steady solution contains axial waves only (cf. (19), (30) and (52)). In this
case the total acoustic pressure normalized by its value at the duct centreplane
provides a quantitative measure of the global refraction effect:

A

Pe v 14m S 2% [cos (3km) — cos (kmy)], (55)

psc k=1 k

where the subscripts s and ¢ denote quasi-steady state and centreplane respectively.
Equation (55) is in fact the ratio of the amplitude functions for the fundamental
mode, equivalent to those found in earlier studies (Pridmore-Brown 1958 ; Mungur &
Gladwell 1969; Hersh & Catton 1971) in the low-frequency range.

In figure 6 (55) is plotted for the case £ = wt and M = 0.1, for three types of mean
flow conditions: U=1—2y—1|, U=4y(1—y), and U = (1—|2y 1])7. The familiar
results are presented in decibels to follow convention. Obviously, the acoustic energy
of the downstream-propagating axial wave train is channelled towards the walls. The
linear and parabolic mean flows cause acoustic refraction effects of similar
magnitudes, while the shear flow represented by the one-seventh power law generates
the smallest refraction for the reason explained previously.

It must be emphasized that (55) or curves like those in figure 6 are accurate
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representations of acoustic refraction phenomena in quasi-steady state, when the
duct geometry only allows purely axial wave propagation for the given driving
acoustic frequency. For £ > 2, like the case depicted in figure 4, refraction of the
planar axial wave also generates oblique travelling waves. The ratio of local acoustic
pressure to that at the centreplane is both ¢- and z-dependent, and is not a useful
representation of the transverse variation of the refraction effect.

3.3. Resonant amplification of refraction phenomena

The above discussions have been focused on non-resonant situations. The refractive
pressure responses is dramatically different if ¢,.=1, or in physical terms,
d’ =jn*X’, where n* denotes the resonant mode. The resonance occurs because
the frequencies of J(§) and the harmonic function in (50) are nearly identical for
£> 1 when g,. = 1. As a result, the integral becomes unbounded when ¢ -0, and no
quasi-steady solutions exist. When the time is large, Z < O(1), one can show that

L.t > 1,%) ~ (2t/n): cos (t—1m). (56)

In particular, at Z = 0 (50) can be evaluated exactly (Gradshteyn & Ryzhik 1980) to
give

I,u(t,0) = f cos (t—£) Jo(£) AE = tJ(0), (57)

which agrees with (56) if the asymptotic property of J, for large ¢ is used. By using
{56) the resonant Fourier mode in (48) can be written asymptotically as

Pt > 1,%) ~ U,.(¢/2m)} [cos (t—Qy—1n) + cos (¢ + Qy—1im)]. (58)

It shows clearly the pair of purely transverse waves trapped in the duct with growing
amplitudes.

Numerical evaluations of (50) for g, = 1 are shown in figure 7, where the horizontal
coordinate is the characteristic coordinate ¢ — ¥ for easier comparison. As the Z-value
is increased, similar trends of growth with ¢ are observed. However, the solutions at
t = 60 still exhibit strong z-dependence because the asymptotic results described by
(56) have yet to be reached.
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The effect of resonance on acoustic refraction is explicitly demonstrated in figure
8, where the variations of p, on the duct wall y = 0, at three separate axial locations,
are plotted against time. The shear-flow profile is parabolic as used earlier. The
driving frequency 2 = 2m, so that the » =2 mode in the second term of (46) is
resonant. All the pressure curves show growth in amplitude after sufficient time
elapses, when the growing resonant mode embedded in the second summation
dominates the system in (46). For relatively short time, however, the resonant mode
amplitude is not large compared with that of the fundamental mode (the entire first
term in (46)). The amplitude of p, may initially decrease with time, as in the cases
for £ = 2 and 3m, owing to destructive interference.

Calculations for 2-values slightly below and above the resonant frequency 21 show
similar trends of growth for p,. However, the amplitudes eventually approach large
but finite limiting values predicted by (52).

The resonant result illustrates a fascinating mechanism for exciting and amplifying
purely transverse waves in the duct through axial wave—shear flow interaction. This
shows yet another distinct advantage of the present analytically based initial-
boundary-value study. Numerical investigations for travelling wave refraction
(Baum & Levine 1987) are limited to a few wave cycles only, owing to difficulties
associated with non-reflective outflow boundary conditions. The results in figure 8
show that short-time solution behaviour cannot be used to determine if resonant
amplifications of refractive pressure are occurring. The classical quasi-steady
solutions (e.g. Pridmore-Brown 1958), on the other hand, cannot describe the
resonant mode at all.

Owing to the # growth of the resonant or near-resonant mode in p,, one concludes
that for such systems the perturbation expansion (19) breaks down as t ~ O(M~%). A
new derivation will be needed to predict its long-time behaviour, which will contain
the resonance-enhanced refraction effects (the transverse waves) in the leading order.

It should also be noted that the validity of the perturbation solutions developed
above depends on the value of Q. In general, once the dimensionless frequency 2
becomes as large as O(M¥), the magnitude of Mp, becomes comparable with that of
P, {cf. (30), (46) and (43)), causing the breakdown of the asymptotic expansion (19).
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The actual size of Mp, nevertheless also depends upon the magnitude of T,. For mean
duct flows symmetric with respect to the centreplane y = 1, the largest terms in the
Fourier summations in (46) and (52) vanish because (7,, = 0 for n odd. As shown in the
example calculations, p, remains O(1) when the value of £ is as large as 8.

In the high-frequency limit £ » 1, when acoustic refraction effects are no longer
small correction terms of O(M), a new theory needs to be developed which includes
refraction in the leading-order acoustics.

3.4. Acoustic transients due to a y-dependent boundary disturbance

In this section non-axial acoustic transients generated by source oscillations with
y-dependent amplitude is discussed.

If the velocity oscillation at the source (£ = 0) is given by 4 = A(y) sin (¢), (29)
must be solved subject to the following conditions:

t=0, p,=p,=0; (59)
T=0, pz=—4(y) cos(t); T—->o0, p, = finite; (60)
y=0;1, p1y=0. (61)

A solution procedure identical to that used to solve (32)—(35) can be employed to
obtain

p,=A,sin t—5)+ Y 4,1,(t,T) cos (nmy), E<t, (62)
n=1
where I,, is the same integral as defined in (50). The Fourier coefficients 4, and 4,
are defined by

o
A(y) = Ay+ X A, cos (nmy). (63)

n=1
Equation (62) consists of a propagating axial wave mode of constant amplitude 4,
and an infinite number of dispersive higher modes. Note that unlike the O(M) higher
modes due to refraction considered earlier, here the higher modes, generated directly
by the acoustic source, are of the same order of magnitude as the fundamental mode.
After sufficient time elapses, in the absence of resonance, the solution may again be

expressed in the quasi-steady form,

. N 4
p=Aysin t—2)+ X n

ar (1—g2)}

sin [t— (1 —¢2) ] cos (nmy)

+ cos (t) f; 2‘4" cexp [— (g2 — 1)} Z] cos (nmy). (64)
n=N+1(qp— 1)

As an example, the boundary disturbance 4(x = 0) = y sin (¢) in a laminar mean
flow field with bulk velocity T}, = 2, is considered. This bulk velocity corresponds to
U = 4y(1 —y), although the explicit form of U(y) is not needed for the leading-order
calculation. The maximum mean flow Mach number is assumed to be 0.1. Figure
9(a—d) exemplifies the characteristic acoustic pressure signals at x = 2r (2" = A),
under four different driving acoustic frequencies, as evaluated numerically from (62).
In each part of the figure, the time variations of p, on both duct walls (y =0, 1) and
at the centreplane (y =1) are depicted. In figure 9(a) 2 = 2, lower than the cutoff
frequency for the first oblique propagated mode in the duct. The resulting wave field
is basically an axial one. Thus the pressure signals at three different y-locations on
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the same duct cross-section are almost the same, of amplitude approximately 1 (4,
n (63)). The small deviations are again attributed to the initial transients that
diminish as time progresses. Figure 9 (b) corresponds to £ = m, the resonant frequency
for the first acoustic mode (» = 1), which causes p, to grow with time. The wave field
is no longer purely axial because of the appearance of the transverse waves associated
with the resonant mode. The results in figure 9(c) for 2 =4 contain both the
fundamental mode and the first propagated oblique mode. The pressure curves vary
with the y-coordinate but are bounded. Finally, in figure 9(d) the driving acoustic
frequency is high enough to allow the third propagated oblique mode to appear in the
duct, in addition to the fundamental and the first modes (note that the even modes
do not appear because 4(y) is an odd function of y). The acoustic pressure curves
differ dramatically from those in the previous three figures.

Additional numerical evaluations of p, show that when the acoustic frequency is
varied within the range that allows a fixed number of propagated modes, the
character of the wave field remains similar though the results vary in a quantitative
sense. However, whenever the cutoff frequency of a new mode is crossed, there is a
qualitative change in the wave phenomena.

The O(M) refraction effect of this more general acoustic system could be studied by
using the first-order results in (31). This is deferred to a future endeavour.

4, Acoustic boundary-layer solution
4.1. Boundary-layer formulation

In the acoustic boundary layer near the wall at y = 0, thermodynamic perturbations
must be of the same order of magnitude as those found at the edge of the core flow.
Therefore,

p=1+M*yp, p=1+M*p, T=1+MT, (65)

where the tilde denotes acoustic quantities superimposed on the mean state. A
stretched boundary-layer coordinate pointing away from the wall,

1=1y/9, (66)

is needed in order to describe the structure of the extremely slender acoustic
boundary layer. A balance between diffusion and other important physical
mechanisms in the general governing equations (2)—(6) can be obtained if

M\
5= (Q—Rz) , (67)

which provides the scale of the acoustic boundary-layer thickness. In dimensional
terms, one finds the well-known result & ~ (v'/w’)}, indicating explicitly the
dependence of boundary-layer thickness upon the fluid viscosity and the frequency
of the travelling acoustic waves. The appropriate scalings for fluid velocities in the
layer, obtained by examining the asymptotic behaviour of (11) when y—>0 for
e =M, are given by

u=Mi+U0)+..., v=Md)7d. (68)

The O(4) contribution to u arises from the Taylor series expansion for U(y) in the
boundary layer, which is much smaller in magnitude than the horizontal acoustic
velocity M, given the assumption made in §2 that M > 1/Re. Consequently, the
independent variable z, rather than Z, is an appropriate horizontal coordinate.
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If the new dependent and independent variables defined in (65)—(68) are used,
(2)-(6) can be transformed into

yp—p—T = M*pT, (69)

pe+ 1y + 0, = —M[(piE), + (pD),] + O(M3), (70)

@y —d,,+P, = M(pu,+uu +9i,) + O(M*) + O(M3), (71)
= 0(3%), (72)

71—1% T+ (y—1) (i, +6,) = M {y(y—1) (42— p(d, +7,)]

—(pT+aT, +oT )} + OM*) +O(M3). (73)

The above equations are accurate representations of (2)—(6) in the acoustic boundary
layer up to O(M?). The orders of magnitude of terms not written explicitly are
indicated in each equation. It is interesting to notice that nonlinear product terms,
which are responsible for acoustic streaming phenomena (Rott 1964), again turn out
to be of O(M?) relative to leading-order acoustics. Terms of O(M¢) result from the
residue mean flow velocity in the boundary layer (cf. (68)). These are higher-order
small quantities, of size comparable with O(M*?) terms under flow conditions
described by, for example, M = 0.1 and Re = 108,

In the following solution development, correction terms of O(M?) and smaller in
(69)—(73) are ignored. For convenience the same variable names (with an implicit
zero subscript) will be used to describe the basic acoustic variations in the asymptotic
series. Notice that although O(M) terms do not appear in (69)—(73), the results are
valid to O(M), and are matched with the core solutions to the same order. The general
matching conditions are expressed mathematically as

Tb.l.(xs t,p—>00) ~ Wcore(x’ ¢, y—>0), ¥ = (u,v, D ps T) (74)

On the duct wall the no-slip condition and the appropriate thermal conditions must
be imposed.

4.2. Transient solutions
The acoustic pressure is seen from (72) to be basically uniform across the boundary
layer, equal to that at the edge of the layer. Thus

P =P z;y—>0). (75)
When the small correction terms on the right-hand side of (71) are truncated, the
resulting equation, which describes the transient diffusion process of the horizontal
velocity perturbation driven by the acoustic pressure, is seen to be decoupled from
the others. It must be solved subject to the no-slip condition at 7 =0. At t =0, @
must vanish because there is no acoustic motion in the core. Following a standard
Laplace transform procedure, the solution is obtained in integral form:

NN A 7
a=-[ g mert (31 ae (76)

Equations (30), (46) and (62) can be used in (75) and (76) to evaluate the
corresponding boundary-layer velocity.

It is also of interest to study the transverse acoustic velocity and other
thermodynamic variables in the acoustic boundary layer. To this end (69), (70) and
(73) are combined to find

~

T— T =(y—1)5, (77)
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which is a diffusion equation with a compressibility forcing function, valid to OM).
An appropriate thermal condition needs to be specified at the duct wall, to obtain
solutions for 7' as well as 5 and #. For simplicity two idealized types of thermal
conditions, i.e. the adiabatic condition and the isothermal condition, are considered,
with the understanding that practical situations usually lie in- between

(i) Adiabatic wall (T,(n = 0) = 0). A formal solution to (77) subject to zero initial
condition and the a.dlabatlc wall condition yields the isentropic relations

=(y-1p, p=9p (78)
if (69) is used. This indicates that no thermal diffusion exists, and all the

thermodynamic quantities are uniform across the acoustic boundary layer. Equation
(70) can be integrated to O(M) by using (76) and (78) to give

a2 ¢
=-pirvgy| [ 2 [ et (Gt acae], (19

which is zero on the wall surface. By employing integration by parts for the error
function, the above result is rewritten as

| _s 1 U " U
v [ Pt (2(t—f)*)+£p = et (2(t—§)*) dg]”

1 20—z) S A Y2 L 7 ]_)
T (exp [ 4(t—f)] 1)+n%£p““ 2 (e"p [ ww-p) )%
(80)

where the factor 1/(1+MU,) arises from dz/dz. Equation (80) is arranged according
to terms that grow with 5 and those that remain O(1) as 7 —c0. The former are driven
by the refraction-induced transverse velocity in the core, and can be shown to match
with the asymptotic behaviour of the corresponding core solution, given the
coordinate transformation (66).

(ii) Isothermal wall (T(y = 0) = 0). The mathematical system for 7' is analogous to
that for 4. The solution can immediately be written down as

T=(y—1)J1pg(g z) erf(m g))dg, (81)
where Ny = 9(Pr)i= Jl (82)
T

is the vertical coordinate for the temperature boundary layer, of thickness
characterized by 8, = (M/(22Pr Re)):. Equation (81) can be transformed into a more
meaningful form by integrating the right-hand side by parts, and defining

__
Ty ®)
to give T= (y—l)[ﬁ(t,f)—%f;p(t—;’—é :f) -fdg]. (84)

2(t-1)2

The second term in the square brackets in (84), arising from conduction effects,
describes the deviation in temperature from the isentropic condition represented by
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P(t, T). One notices that at Z = ¢, the instantaneous location of the acoustic wavefront
in the core, both # and 7' are zero to match those quantities in the undisturbed flow
field. The acoustic density and transverse velocity for the present case can be derived
from (69) and (70), respectively. They are omitted here for brevity.

4.3. Quasi-steady solutions

As shown previously, core solutions for a non-resonant acoustic system as t—z
becomes large consist of quasi-steady modes only. The corresponding boundary-
layer solutions are more easily derived by using the complex notation. The acoustic
pressure is written as a summation of complex Fourier series,

BB =13 a,exp [—it—(1—g2}ia)]. (85)

Given (75), a comparison of (85) with the core pressure expressions shows that

0
_1_M22U

k-1 Tk
MU(2 qn)
E(1—g )

for the axial wave refraction case (cf. (30) and (52)), and

n=1,2,.. (86)

n

a, = 4,,

a” = A”2 1>

(1 - q”)i

for the non-axial wave case examined in §3.3 (cf. (64)), without considering the
refraction effect.

The velocities in the acoustic boundary layer are dependent upon the boundary

coordinate 7. One can assume that the quasi-steady solutlon for each horizontal

velocity mode is of the form @, = b,(y) exp [—i(t—(1— q2)iz)]. If this expression is

substituted into (71) with (85), and the conditions #,(y = 0) =0; @,(y >0) = O(1)
are invoked, then the desired solution is

n=12,... (87)

=2 - T (1‘43»)*<1—8XP (—1\/;2177)) exp [—it—(1—gd)i=)],
n=0 0 n=0

(88)

where a,, is given by (86) or (87), depending on the core acoustic solutions. Equation
(88) can be rewritten in terms of its real part, which is, for the refraction case,

o1 _ o _—_l_]
= a7 5 ) in -0 —exp (= Jg)sin 1-2—-)
2 . _ Ul
Py "(E 1)[sm (t—(l—qf,ﬁx)—exp( \/2)Sln(t_(1 q,,)x W)]
17| & - A Y P
+M”’§+1U (E )exp [— (gt —1)z] [sm ) exp( \/2) sin (t \/2)]}. (89)

As the value of 7 increases, the 7-dependent terms in (89) diminish exponentially, and
the result is that of the inviscid core evaluated at y = 0.
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The first term inside the curly braces in (89) is associated with the fundamental
propagated mode in the core. It is the axial travelling wave counterpart of the
classical Stokes solution (Stokes 1851). Thus the characteristic behaviour of the
Stokes solution, including velocity overshoot (Richardson’s annular effect) near the
edge of the layer, and strong viscous damping near the wall will be observed (cf.
figure 10). The amplitude of the fundamental mode deviates by O(M) from unity,
owing to the acoustic refraction effect (the infinite summation in the parentheses)
and the bulk convection (MT,) caused by the mean shear flow in the core. In the case
of downstream propagation the former effect augments the axial wave amplitude,
while the latter damps it. For upstream wave propagation the reversed trend is
obtained. Equation (89) also shows that the N higher propagated modes behave in
the same way as the fundamental mode, except for decreased amplitude and
increased phase speed as the mode number 7 increases. Each mode exhibits
Richardson’s annular effect, followed by smooth transition to no-slip velocity on the
wall. Like the core solution, the effect of attenuated modes is limited to a region close
to the acoustic source.

The result given by (89) is illustrated graphically in figures 10 (a) and 10(b), which
depict horizontal velocity profiles across the acoustic boundary layer when £ =2
and 7 respectively, for }n intervals over one acoustic period, at a location one-and-
half wavelengths (x = 3n) downstream of the plane acoustic source. This location is
sufficiently far from the acoustic source that the effects of stationary modes (last
summation term in (89)) are virtually non-existent. The solid lines denote the
horizontal velocity % when a mean flow field, described by U = 4y(1 —y) and M = 0.1,
is present in the core region. The velocity distributions for the case of no mean flow
(M = 0), which corresponds to the Stokes solution, are also plotted as dashed lines for
comparison. It is observed that when © = 2, the analogous solid and dashed curves
differ only by a constant multiplication factor (cf. (89)), because the only propagated
mode in the duct is purely axial. The velocity amplitude is smaller than that of the
Stokes solution due to the bulk convection, whose damping effect exceeds the
amplifying effect of refraction at this low frequency. It should be pointed out that
the pairs of solid and dashed curves in figure 10 are plotted at the same relative phase
within a eycle beginning at their respective maximum velocity. The two solutions are
out of phase in the absolute sense because the acoustic wave carried by the mean flow
arrives at the given position sooner than that in the static field.

As the driving acoustic frequency becomes higher, the increased refraction
amplifies the velocity oscillation. When Q = 6, the refraction effect roughly balances
the bulk convection effect, and the velocity curves are found to coincide with those
derived from the Stokes solution. The acoustic system remains dominated by the
single fundamental mode until £ > 2n, when the second mode (n = 2) appears.
Figure 10(b) depicts such a case where £2 = 7. Here the amplitude of the acoustic
velocity is larger than that of the Stokes velocity. The velocity profiles can no longer
be obtained by multiplying the corresponding Stokes velocity profiles by a constant,
because the addition of the second propagated mode alters the phase of the velocity
at each time instant. Additionally, this mode makes the magnitudes of the velocity
as well as pressure 2-dependent because the oblique waves strike the boundary layer
non-uniformly along its course of propagation (cf. figure 2).

On the acoustic source plane, x = 0, it can be shown that (89) takes the form

4(X = 0) = sin () —exp (—%) sin ( —%) (90)
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Ficure 10. Profiles of quasi-steady horizontal velocity across the acoustic boundary layer at
z = 3r, for in intervals over one acoustic period, when the mean flow in the core is described by
U=4y(1—y) and M =0.1, and the acoustic disturbance is #(z =0)=sin{t). The dashed
lines correspond to the Stokes solution (M = 0). The dimensionless frequencies are (a) 2 = 2;
b)yQ="1.

All the O(M) terms disappear because acoustic convection and refraction only take
place away from the acoustic source. However, (90) does not satisfy the boundary
condition (17) because non-zero # is allowed at x = 0. A boundary-layer type of
treatment which eliminates the slip velocity along the acoustic source plane will be
necessary in order for the extra term in (90) to vanish.

The acoustic temperature and transverse velocity in the quasi-steady state
depend on the thermal boundary condition along the duct wall. If the wall is
adiabatic, the thermodynamic properties of the boundary-layer gas again obey the
isentropic relation (78), and the transverse acoustic velocity is integrated from (70)
to give

- £l
nmo (L1 +MG)?

l—gn 1+4i 1—i _ -
+(1+—Mqﬁo)—z\/—2l(exp(—\/—2lﬂ)“l)}exp[“l(t—(l—ﬁ.)’x)]- (91)
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Ficurk 11. Profiles of quasi-steady transverse velocity across the acoustic boundary layer adjacent
to an adiabatic duct wall, at z = 3x, for in intervals over one acoustic period, under conditions
identical to those in figure 10. The dimensionless frequencies are (@) 2 =2; (b)) 2=17.

Figures 11 (a) and 11 (b) display the transverse velocity profiles, calculated from (91),
under conditions identical to those employed in figures 10(a) and 10 (b) respectively.
The transverse boundary-layer motion for 2 =7 is quite different from that for
£ = 2, owing to the existence of the oblique acoustic waves in the core in the former
case. As 7 becomes large, both cases exhibit growth in velocity amplitude with 7 to
match with that in the core, in contrast to the transverse velocity in a Stokes
boundary layer whose amplitude approaches a constant as the edge of the layer is
approached.

If the wall is kept at constant temperature, the solution for 7' and ¥ can be derived

from (77) and (70) in the same manner. They are expressed below in the complex
form:

Teity—1) 3 a,.(l—exp (—1—_—ivT))exp [—it—(1—gi)im)],  (92)
V2
L 1—gq; 1—¢2 1+4i =i )
”"E“"{[(HMU;)Z 1]”*(1+MU‘;)2 vz(e"p( vz”> 1)

—114i 1—j ‘ ‘
+7(,p,)%%(exp (—721%)— 1)} exp [—i(t—(1—g3)iZ)]. (93)
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The similar forms of (92) and (88) suggest that in the thermal boundary layer
adjacent to an isothermal wall, the temperature diffuses in the same way as the
horizontal velocity does in the viscous boundary layer. The first two terms in the
curly braces of (93) are identical to those in (91), representing the effect of
momentum diffusion driven by the acoustic waves in the core. In addition, thermal
expansion of the gas due to non-uniform temperature distribution across the layer
also contributes to the transverse fluid motion. This effect is represented by the last
term in the curly braces of (93).

The fundamental mode in (92) and (93) can be shown to agree with the results
obtained by Rott (1980) where the effect of the mean shear flow is removed. An
important contribution of the mean shear flow is to generate a variety of acoustic
waves that all contribute to the larger transverse velocity, represented in the
acoustic boundary layer by the term proportional to % in (91) and (93). In the limit
7 —00, the magnitude of this term exceeds that of all the others, thus (91) and (93)
have the same asymptotic behaviour which can be shown to match with that of the
core solution.

5. Discussion and conclusions

In this study a systematic analysis has been developed to discover the effect of a
low-Mach-number shear flow on acoustic wave propagation in a planar duct. Two
distinct flow regions are considered: the inviscid, non-heat-conducting core region
and the thin acoustic boundary layer near the wall of the duct. The mathematical
analysis is carried out in the limit M —0 for Re>» O(1/M), when the axial
wavelength is longer than or comparable (in the order of magnitude sense) with the
duct width.

Solutions for the acoustic pressure and velocity desecribe both short-time acoustic
transients and long-time evolution for both non-resonant and resonant cases. This
study bridges the recent transient numerical study of Baum & Levine (1987) and
earlier quasi-steady studies (Pridmore-Brown 1958, for example) and, more
importantly, provides new results not available in those investigations. More
physical insights into the refraction mechanism are obtained by demonstrating
explicitly the interactions between the mean flow and the various types of acoustic
waves represented by Fourier modes whose summation describes the global
variations in acoustic quantities.

It is of interest to compare the present perturbation results with the numerical
solutions of Baum & Levine (1987), to shed light on a number of issues raised in their
initial-boundary-value numerical study valid over a few acoustic periods.

(i) Acoustic refraction magnitude. The following examples are used to demonstrate
that the present linear analysis yields refraction magnitudes comparable with those
from numerical solutions to the Navier—Stokes equations (Baum & Levine 1987). In
a duct of width d" = 0.1 m, with a symmetric mean flow described by the one-seventh
power law, a centreplane Mach number M = 0.1 and sound speed ¢’ = 340 m/s, the
dimensionless frequency corresponding to f = 3000 Hz is 2 x 2.772, less than the
cutoff frequency for the first oblique wave. The quasi-steady axial wave solution is
thus representative of the acoustic refraction phenomena since the transient effects
are relatively small. The pressure amplitude near the wall, as calculated from (55),
is 4.5% larger than that at the centreplane. This result compares well with the
numerical result of 6.4% by Baum & Levine (1987), who employed the same
conditions except that d’ is the diameter of an infinite cylinder. When the acoustic
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frequency is changed to 1000 Hz (2 = 0.924), the linear asymptotic solution and
nonlinear numerical solution yield near-wall acoustic pressure increases of 0.50 %
and 0.55 % respectively, relative to the centreline pressures. They are again in good
agreement. The above comparisons should of course be interpreted in the qualitative
sense, in view of the different geometries (parallel duct vs. circular cylinder) and flow
models (laminar »s. turbulent k—¢ model) used in the two studies. Nonetheless they
demonstrate that linear studies can predict refraction effects accurately, and that the
two types of solutions are in qualitative agreement if comparisons are made in the
same parameter range. In the light of these conclusions, it is likely that the
differences between linear and nonlinear results noted by Baum & Levine (1987)
result from comparisons in inappropriate parameter regimes.

(ii) Acoustic boundary-layer thickness and structure. The boundary-layer structure
described in the perturbation solution, including the Richardson’s annular effect and
the substantial viscous damping, also agrees qualitatively with that found by Baum
& Levine (1987). In particular, it is of interest to compare the boundary-layer
thickness predicted by the analysis with that from the numerical work.

The effective thickness of the velocity boundary layer, as defined by Lighthill
(1978), is given by 58 = 5(M/ (2Re)):. According to figure 10, this corresponds to the
distance away from the solid wall at which the amplitude of %, after the overshoot,
approaches its asymptote of constant value to within approximately 2.7%. For
acoustic waves of frequency 1000 Hz travelling in air contained within a duct of
width 0.1 m, under standard conditions (one atmospheric pressure and room
temperature), the calculated boundary-layer thickness is approximately 0.25% the
width of the duct. This result should also hold for wave motion in a circular cylinder
of diameter equal to the duct width, because the curvature effect is negligible in the
extremely thin layer. If the same criterion of 2.7 % deviation is applied to figure 14
of Baum & Levine (1987), one finds a boundary-layer thickness of approximately
0.35% of the diameter of the cylinder. This result is actually larger than, but agrees
well in the order of magnitude sense with, the linear perturbation prediction. Similar
agreement is observed in terms of the maximum velocity overshoots and the
locations where they occur. Thus we do not agree with the conclusion of Baum &
Levine (1987) that linear theory significantly overpredicts the boundary-layer
thickness.

(iii) Nonlinear effect and acoustic streaming. In the present work, through a
systematic rational approximation and perturbation procedure, it has been
demonstrated in (13)—(15) that the convective nonlinear terms are O(}) smaller than
those responsible for acoustic refraction when x = O(1). Although the former can
have an accumulative effect which eventually leads to waveform deformation and
weak shock formation, the nonlinearization process becomes prominent only after
the wave travels a distance of x = O(M~%) (Kevorkian & Cole 1981 ; Wang & Kassoy
1990). Nonlinearity cannot have a profound influence on either the acoustic or the
overall flow quantities, on the O(1) time and length scales considered by Baum &
Levine (1987). In the acoustic boundary layer the nonlinear terms are again shown
to be O(M?) relative to the basic variations occurring there (cf. (69)—(73)). Acoustic
streaming associated with the nonlinear convective terms is thus insignificant
relative to the amplitude of refraction effects. The relatively good agreements
between the present fundamentally linear solutions and the fully nonlinear numerical
solutions in terms of refraction size and acoustic boundary-layer structure, discussed
above, also attest to the insignificance of the nonlinear phenomena.

The major findings of the present study can be summarized as follows. When a
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plane acoustic source of uniform strength is placed across a duct containing an
undisturbed shear flow, it induces leading-order purely axial and quasi-steady
acoustic waves propagating at a speed which is modified by O(M) due to bulk
convection. Second-order acoustic quantities, including y-dependent axial and
oblique propagating waves, as well as bulk forced oscillations that affect only a
narrow region near the plane acoustic source, are generated as a result of leading-
order axial wave refraction by the mean flow velocity gradient. The propagated and
attenuated wave modes exhibit transient phenomena initially, and evolve gradually,
in the absence of resonance, into their respective quasi-steady state long after the
passage of the axial wavefront.

Resonance occurs when the duct width is an integer multiple of the driving
acoustic wavelength. Then, the refraction of the axial wave induces an amplifying
purely transverse wave. In general, the refraction effect increases with the driving
frequency as well as the mean flow Mach number, and decreases with the wave
amplitude. The refraction-induced O(M) wave phenomena become increasingly
complex as the number of propagated modes, which is proportional to the driving
frequency for given duct geometry, increases. At low frequency, when the driving
acoustic wavelength is greater than the duct width, the only propagating waves are
axial, and the net effect of acoustic refraction is to distort the pressure distribution
across the wave by O(M). The quasi-steady solutions agree with the classical axial
wave solutions.

In the thin acoustic boundary layer, typically with thickness of less than 1% of
the duct width, the acoustic pressure is basically uniform across the layer, equal to
that at the outer edge of the layer. The boundary layer responds to all the acoustic
modes existing in the core region, generating complex velocity and temperature
responses. Quasi-steady solutions again exist when resonance is absent, after an
initial transient period. The horizontal velocity component for each acoustic mode
exhibits Richardson’s annular effect, followed by smooth transition to a no-slip
boundary condition on the wall. The total horizontal velocity deviates by O(M) from
the Stokes solution, because of the acoustic refraction and convection effects
generated in the core. The transverse velocity grows with the transverse boundary-
layer coordinate, and is matched by the core solution outside the layer.

This work was supported by Air Force Office of Scientific Research through grant
AFOSR 89-0023.
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